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Abstract

In recent years, BiVO4 has drawn much attention as a novel photocatalyst given its excellent ability to absorb visible light.
This work reports the development of Ag-modified BiV1-xMoxO4 composites through a facile hydrothermal synthesis with
the subsequent photoinduced reduction of Ag+ at almost neutral pH conditions. Metallic Ag nanoparticles were
deposited on the (040) facet of Mo-doped BiVO4 powders. The crystal structure and morphology of the as-prepared
samples were studied by XRD and SEM analyses. Moreover, the photocatalytic performance of BiVO4, Ag/BiVO4, and
Ag-modified BiV1-xMoxO4 were evaluated by the degradation of rhodamine B (RhB). The Ag/BiV0.9925Mo0.0075O4

composite exhibited the most efficient photocatalytic performance. The present work provides greater insight into
the application of BiVO4 in the field of photocatalysis.
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Background
Given the increasing environmental pollution and energy
crises, the development of efficient and promising
solutions to reduce energy shortages and protect the
environment is paramount [1, 2]. Photocatalyst-based
semiconductors, such as Bi2WO6 [3, 4], BiPO4 [5, 6],
Ag3PO4 [7, 8], and BiVO4 [9–13], have attracted much
attention due to their applications in the degradation of
organic pollutants or hydrogen production from water
splitting. Nevertheless, most of the existing oxide photo-
catalysts have very low light-response efficiencies
primarily because they only respond to ultraviolet light
due to their narrow bandgaps [14–16]. Additionally, the
photoinduced electrons can easily recombine with holes
leading to a lower optical performance [17, 18].
Due to its visible photocatalytic activity, wide bandgap

of 2.42 eV, high stability, and non-toxicity, bismuth
vanadate (BiVO4) is a promising n-type semiconductor

photocatalyst [19–21]. However, its resulting carrier
transfer efficiency is relatively poor, leading to the
recombination of photogenerated electrons and holes,
which severely limits the photocatalytic performance of
BiVO4. Various studies have assessed BiVO4 modifica-
tions [20, 22–24], and substitution or metal doping on
BiVO4 has been shown as the most efficient method to
change its carrier transport efficiency. Metal element
doping introduces new defects or charges in the crystal
lattice [25], influencing the motion of electrons and the
creation of holes under light irradiation [26, 27]. Adjust-
ments to the distribution status or changes in the band
structures can lead to changes in the activity of semicon-
ductors [28]. For example, Thalluri et al. [29] introduced
hexavalent molybdenum (Mo) at an almost neutral pH
to substitute V while preserving the atomic ratio of
fBiVO4, leading to the formation of a good crystal struc-
ture and considerable photocatalytic activity for water
oxidation. Mo has a higher valence than V and therefore
strengthens the n-type characteristics of the material
[30]. Additionally, the photocatalytic activity of BiVO4 is
highly dependent on its various crystal facets. Recent
studies on the deposition of noble metals, such as Ag,
Cu, and Au, on the different facets of BiVO4 have
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demonstrated good photocatalytic activity [31–33]. Li
et al. [34] produced an Ag/BiVO4 composite through
the hydrothermal synthesis and photoreduction of Ag
deposited on the (040) crystal facets of BiVO4, leading to
an enhanced photoelectrochemical performance, as indi-
cated by the fast separation of the electron–hole pairs.
In the present study, we build on the facile hydrother-

mal synthesis approach of Li et al. [29] to obtain
BiV0.9925Mo0.0075O4 in weakly alkaline conditions,
coupled with photoreduction deposition of Ag nanopar-
ticles on the (040) facets of the as-produced substrate
materials. Ag/BiV0.9925Mo0.0075O4 composite photocata-
lysts were successfully synthesized and showed enhanced
photocatalytic degradation of rhodamine B (RhB) under
xenon lamp irradiation (λ > 420 nm) compared to the
non-composite Ag-deposited or Mo-doped BiVO4 mate-
rials. Herein, we report the preparation, characterization,
and photocatalytic activity of BiVO4, Ag/BiVO4, BiV1-

xMoxO4, and Ag/BiV1-xMoxO4 composites.

Experimental
Synthesis of BiVO4 and BiV1-xMoxO4 Powders
Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O, analytical
grade), ammonium metavanadate (NH4VO3, analytical
grade), ammonium carbonate, and ammonium molyb-
date ((NH4)2MoO4) were obtained from Sigma–Aldrich
and used as received, without any further purification.
All other chemicals used in the experiments were also of
analytical grade, and deionized water was used for the
preparation of the solutions. In a typical process,
3.7 mmol of Bi(NO3)3·5H2O, 3.7 mmol of NH4VO3, and
12 mmol of (NH4)2CO3 were dissolved in 75 mL of 1 M
HNO3 and stirred for approximately 30 min at room
temperature until a clear solution was obtained. The pH
of the mixture was adjusted to pH 8 with NaOH (2 M).
The mixture was transferred into a 150-mL Teflon-lined
stainless autoclave and heated for 12 h at 180 °C under
autogenous pressure in an oven. The precipitate was
filtered and washed three times with distilled water
followed by ethanol and dried for 12 h at 60 °C in a
drying oven.
The doped samples were prepared by replacing the

equivalent weight of NH4VO3 with different amounts
of Mo. Mo precursors were introduced such that a
nominal 0.5, 0.75, and 1% atomic substitution of V
was achieved.

Preparation of Ag/BiVO4 and Ag/BiV1-xMoxO4 Samples
BiVO4 (0.50 g) and AgNO3 (0.05 g) were added to a
(NH4)2C2O4 (0.8 g L−1, 100 mL) aqueous solution in a
250-mL beaker in an ultrasonic bath until an evenly
dispersed solution was formed. The resulting yellow
mixture was then irradiated with a Xenon lamp for
30 min under magnetic stirring. The color of the system

turned from a vivid yellow to grayish-green, indicating
the generation of metallic Ag in the reaction system. The
resulting samples were then filtered, washed with DI
water, and dried at 60 °C for 12 h to obtain the Ag/BiVO4

and Ag/BiV1-xMoxO4 composites.

Photocatalytic Activity
Assessment of the photocatalytic activity was performed
using the degradation rate of RhB. The experimental sys-
tem for photodegradation was calibrated at a UV cut-off
wavelength below 420 nm, and the irradiation height of
the Xenon lamp was close to the height of the 250-mL
beaker. In a typical procedure, the as-prepared photoca-
talyst (0.1 g) was well dispersed in a RhB aqueous
solution (150 mL, 10 mg L−1) under ultrasonication in a
glass reactor equipped with a cooling water circulator to
maintain a reaction system temperature of room
temperature. The suspension was stirred for 30 min in
the dark to reach the adsorption–desorption equilibrium
and was then irradiated for 2 h with a Xenon lamp
(300 W) under continuous stirring. A 5-mL aliquot of
the suspension was taken every 30 min and centrifuged.
The absorption spectrum of the obtained liquid

Fig. 1 a XRD patterns of pure BiVO4, Ag/BiVO4, BiV1-xMoxO4, and Ag/
BiV1-xMoxO4. b The corresponding EDX analysis of Ag /BiV0.9925Mo0.0075O4
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supernatant was measured in reference to the absorption
intensity of RhB at 552 nm.

Characterization Techniques
The morphologies of the pure BiVO4 and the decorated
composites were investigated by field emission scanning
electron microscopy (FESEM, S4800) and transmission
electron microscopy (TEM; JEM-2100F, JEOL). Elemen-
tal analysis was performed by X-ray photoelectron
spectroscopy (XPS; VGESCA-LAB MKII) with a non-
monochromatic Mg Kα X-ray source. The crystalline
phase of the samples was determined by X-ray diffrac-
tion (XRD; Bruker D8) with Cu Kα radiation. Inductively
coupled plasma (ICP) was employed to analyze the elem-
ental composition of the samples. Additionally, UV–vis
diffuse reflectance spectrum measurements were per-
formed using a Shimadzu spectrophotometer (UV-2450)
to evaluate the bandgap energy of BiVO4, Ag/BiVO4,
BiV1-xMoxO4, and Ag/BiV1-xMoxO4 over a wavelength
range of 360–800 nm.

Results and Discussion
The crystallographic structure and phase of the prepared
composites were characterized by XRD analysis (Fig. 1a).

The sharp diffraction peaks observed in the as-prepared
BiVO4 were assigned to the conventional BiVO4 phase
since they were in good agreement with the standard
(JCPDS) card no. 14-0688. According to the peak split-
ting observed at 18.7° and 30.5°, which indicate the (110)
and (040) facets, the prepared BiVO4 material possessed
a single monoclinic scheelite structure. A diffraction
peak at 38.1° was observed in the Ag-related photocata-
lysts (Fig. 1a) corresponding to the (111) crystal phase of
metallic Ag (JCPDS file: 65-2871). This indicates that
the photoreduction of Ag+ ions indeed occurred, leading
to the deposition of Ag nanoparticles on the BiVO4 and
BiV1-xMoxO4 surfaces. Nevertheless, due to the low rela-
tive content of Ag, the XRD peaks were not intense.
As shown in Fig. 2a, EDS confirmed the presence of

the Ag species, which agrees with the XRD results. The
Bi (Fig. 2b), O (Fig. 2c), V (Fig. 2d), Mo (Fig. 2e), and Ag
(Fig. 2f ) elements are all distributed uniformly in the
Ag/BiV1-xMoxO4 composites, and the results verify the
existence of Mo and Ag. The relative amounts of Mo
did not appear to affect the crystal structure or phase.
The Mo substitution ratio was assessed by ICP (Table 1);
the practical Mo atomic content was calculated to be
0.16% in Ag/BiV0.9925Mo0.0075O4. It was observed that,

Fig. 2 a–d The corresponding elemental mapping analysis of Bi, V, Ag, and Mo in Ag/BiV0.9925Mo0.0075O4, respectively

Table 1 Properties of the pure BiVO4, Ag/BiVO4, BiV0.9925Mo0.0075O4, and Ag/BiV0.9925Mo0.0075O4 powders

Sample BiVO4 Ag/BiVO4 BiV0.9925Mo0.0075O4 Ag/BiV0.9925Mo0.0075O4

Bandgap (eV) 2.30 1.61 2.18 1.78

Atomic% of Ag dopant from ICP – 6.28446 – 5.92476

Atomic% of Mo dopant from ICP – – 0.163704 0.167735

Atomic% of Ag dopant from XPS – 6.03 – 4.72

Degradation rate (%) 6.4 8.4 9.6 97.9
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although the nominal dopant content introduced with
the precursors was 0.75%, the final resulting amount of
Mo in the doped materials was always lower than the
expected. Similar results have also been found in previ-
ous research, and it is possible that intrinsic losses and
the evaporation of the Mo dopant occur during the
hydrothermal synthesis processes [35, 36].
The morphology of the as-prepared pure BiVO4, Ag/

BiVO4, and Ag/BiV1-xMoxO4 were investigated by SEM
(Fig. 3). Pure BiVO4 showed a slice-layer morphology
with several clusters (Fig. 3a, b). For Ag/BiVO4, metallic
Ag was observed to be well dispersed on the (040)
crystal facet (Fig. 3c), which agrees with the XRD ana-
lysis. The images of Ag/BiV0.9925Mo0.0075O4 composite
at different magnification were shown in Fig. 3e, d.
Uniformly shaped metallic Ag nanoparticles were clearly
observed on the surface of Ag/BiV0.9925Mo0.0075O4

(Fig. 3d) likely due to the high exposure of the (040)
surface. This crystal facet has been shown to have a
good charge carrier mobility [37]. Thus, the observed
morphology should be beneficial to the photocatalytic
performance of the synthesized doped BiVO4 powders.
The as-prepared BiVO4, Ag/BiVO4, and Ag/BiV0.9925-

Mo0.0075O4 samples were further observed by TEM
(Fig. 4a). Interplanar spacings of 0.475 nm were clearly
observed in Fig. 4b, corresponding to the (110)

Fig. 3 SEM images. a, b Low- and high-magnification images of pure
BiVO. c, d Low- and high-magnification images of the Ag/BiVO4 composite.
e, f Low- and high-magnification images of the Ag/BiV0.9925Mo0.0075O4

Fig. 4 TEM images of a pure BiVO4, c Ag/BiVO4, and e Ag/BiV0.9925Mo0.0075O4 and b, d, and f high-magnification images of a, c, and e, respectively
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crystallographic facet of BiVO4 (JCPDS Card No.
14-0688). The crystal lattice fringe at 0.226 nm belonged
to the (111) plane of metallic Ag nanoparticles in the
Ag/BiVO4 and Ag/BiV0.9925Mo0.0075O4 samples (Fig. 4d,
f ). Based on the above analyses, metallic Ag was success-
fully deposited onto the BiV0.9925Mo0.0075O4 surface,
leading to a good connection between Ag and the
Mo-doped BiVO4 and promoting effective electron and
hole separation in the composite system.
XPS analysis of the as-prepared samples confirmed the

presence of Bi, V, O, Ag, and Mo (Fig. 5a). The binding
energies of Bi 4f were 158.94 and 164.27 eV,

corresponding to Bi 4f7/2 and 4f5/2, respectively, confirm-
ing the Bi3+ peaks in BiVO4 (Fig. 5b). A typical O 1s
spectrum was observed, as indicated by the main charac-
teristic peak at 529.71 eV (Fig. 5c). The V 2p3/2 and 2p1/
2 peaks observed at 516.5 and 524.1 eV, respectively,
indicated the existence of V5+ (Fig. 5d). The Ag 3d peaks
at 367.98 and 374.0 eV, corresponding to Ag 3d5/2 and
3d3/2 (Fig. 5e), respectively, were observed in both Ag/
BiVO4 and Ag/BiV0.9925Mo0.0075O4, confirming the exist-
ence of the metallic Ag species. Furthermore, the molar
ratio of metallic Ag species accounted for 6.6% of all
elements, as determined by XPS and in agreement with

Fig. 5 XPS spectra of the as-prepared photocatalyst. a The survey XPS spectrum, b Bi 4f, c O 1s, d V 2p, e Ag 3d, and f Mo 3d peaks related to
the photocatalyst

Fig. 6 The photophysical properties of the as-prepared materials. a UV–vis diffuse reflectance spectra of the BiVO4, Ag/BiVO4, BiV1-xMoxO4, and Ag
/BiV1-xMoxO4. b Energy bandgap evaluation of the corresponding materials
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the ICP measurements (Table 1). Finally, the Mo 3d5/2

and 3d3/2 peaks located at 231.7 and 234.9 eV (Fig. 5f ),
respectively, confirm the presence of Mo6+.
UV–vis diffuse reflectance spectrum measurements

were taken to evaluate the optical bandgap and absorp-
tion properties of the photocatalysts, as shown in Fig. 5.
The photocatalytic activity of a semiconductor is largely
dependent on the size of the bandgap; the narrower the
bandgap is, the greater the shift is of the absorption
wavelength towards longer wavelengths. The bandgap of
as-prepared BiVO4 was approximately 2.3 eV (Fig. 6b),
which agrees with the Kubelka–Munk bandgap estima-
tion theory [38]. Compared with BiVO4, all the Mo-
doped samples showed relatively narrow bandgaps
(Fig. 6b). Furthermore, all Ag-deposited BiVO4 and
BiV1-xMoxO4 photocatalysts exhibited strong absorption
in the visible light range in Fig. 6a. The Ag/BiVO4

photocatalyst exhibited the best light absorption. The
absorbance of as-prepared Ag/BiV0.9925Mo0.0075O4 was
between that of BiVO4 and Ag/BiVO4, thus indicating
that the introduction of Mo hindered the photorespon-
sive characteristics of Ag. However, it is worth pointing
out that, in addition to photoabsorption, other charac-
teristics can also significantly influence the photocata-
lytic efficiency of photocatalysts.
Photoluminescence (PL) spectras were taken to inves-

tigate the separation efficiency of the photogenerated
electron–hole pairs. The PL spectra of pure BiVO4,
BiV0.9925Mo0.0075O4, Ag/BiVO4, and Ag/BiV0.9925-

Mo0.0075O4 composites, with an excitation wavelength of
310 nm, are shown in Fig. 7. BiVO4 and BiV0.9925-

Mo0.0075O4 show a prominent emission band centered at
approximately 510 nm. The order of the intensity of the
PL spectra was BiVO4 > BiV0.9925Mo0.0075O4 > Ag/BiVO4

> Ag/BiV0.9925Mo0.0075O4. Because a lower PL intensity

indicates a higher separation efficiency, this would lead to
a higher photocatalytic activity in the overall system.
Consequently, the higher photocatalytic performance of
Ag/BiV0.9925Mo0.0075O4 agrees with the PL measurement.
The photocatalytic decomposition results, according

to the degradation of RhB under visible light
(λ > 420 nm), confirmed Ag or Mo alone had little effect
on the catalytic activity of BiVO4 under light irradiation
for 2 h (Fig. 8). Conversely, the deposition of Ag on Mo-
doped BiVO4 showed effective photocatalytic activity,
with the variation of the Mo content, showing a differ-
ence in photocatalytic activity. Ag/BiV0.9925Mo0.0075O4

exhibited an extremely efficient degradation of RhB
under visible light irradiation with full decolorization
after 2 h while only 7, 8, and 10% degradation was
achieved over BiVO4, Ag/BiVO4, and BiV0.9925-

Mo0.0075O4, respectively. Thus, Mo-doped Ag-
deposited BiVO4 was able to suppress the charge

Fig. 7 Photoluminescence spectra of pristine BiVO4, Ag/BiVO4,
BiV0.9925Mo0.0075O4, and Ag/BiV0.9925Mo0.0075O4 composites

Fig. 8 Photocatalytic degradation of RhB by BiVO4, Ag/BiVO4, BiV1-
xMoxO4, and Ag/BiV1-xMoxO4 photocatalysts

Fig. 9 Five cycle runs of Ag/BiV0.9925Mo0.0075O4 for the
photodegradation of RhB under visible light irradiation
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recombination and greatly enhance the efficiency of
the photocatalytic process.
The stability and reusability of photocatalysts are very

important for their practical application. Therefore, we
assessed the repeated cycles of Ag/BiV0.9925Mo0.0075O4

in the photocatalytic degradation of RhB for 2 h under
visible light irradiation. Overall, 99% of the RhB solution
was degraded after five cycles (Fig. 9), indicating that the
sample exhibited good photocatalytic stability.
To further assess the separation efficiency, the charge

carrier lifetimes of pure BiVO4, Ag/BiVO4, and Ag/
BiV0.9925Mo0.0075O4 were also analyzed (Fig. 10). The

decay curves for the as-prepared photocatalysts fit well
to a double-exponential function. The charge carrier
decay lifetimes of BiVO4, Ag/BiVO4, and Ag/BiV0.9925-

Mo0.0075O4 composites were 1.2304, 1.8220, and
2.0933 ns, respectively. Thus, the Ag-deposited samples,
both with and without Mo doping, had much longer
charge carrier lifetimes than pure BiVO4, achieving
effective photocarrier separation and suggesting that a
synergistic effect among Ag, Mo, and BiVO4 led to en-
hancements of the photocatalytic activity.
To explore the underlying photocatalytic mechanism,

RhB degradation was conducted under visible light
irradiation [39], adding a hole (h+) scavenger (ammo-
nium oxalate ((NH4)2C2O4)), a superoxide radical (•O2−)
scavenger (1.4-benzoquinone, BQ) [40], or hydroxyl rad-
ical (•OH) scavengers (tert-Butanol, t-BuOH) [41].
Following the addition of BQ, no obvious decrease was
observed, but an acceleration in the degradation rate
was detected compared to that of Ag/BiV0.9925-

Mo0.0075O4 (Fig. 11). The faster degradation rate may
have resulted from the SPR-effect of metallic Ag in Ag/
BiV0.9925Mo0.0075O4, which would enhance the separ-
ation efficiency of electrons and holes. However, when
t-BuOH was added, the catalytic efficiency decreased
from 97.5 to 78.1%, indicating the presence of •OH as
the active species. The photocatalytic activity was
drastically reduced with the addition of (NH4)2C2O4,
suggesting that the holes acted as the main active
species.
To further confirm the main active species generated

in the photocatalytic process, electron spin resonance
(ESR) was used. The principle of ESR is to react with
free radicals using a spin-trapping agent to generate a
relatively stable free radical adduct. A peak intensity was
observed under visible light compared with dark condi-
tions (Fig. 12a), demonstrating the existence of •O2−. In

Fig. 10 Ns-level time-resolved fluorescence decay curves of as-prepared
a BiVO4, b Ag/BiVO4, and c Ag/BiV0.9925Mo0.0075O4 composite

Fig. 11 Plots of photogenerated carrier trapping in the system
during the photodegradation of RhB by Ag/BiV0.9925Mo0.0075O4
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addition, obvious signals (Fig. 12b) suggested that •OH
was produced in the photocatalytic process. In conclu-
sion, the radical trap experiments and ESR analysis
revealed that the photocatalytic process was governed by
the combined effect of h+, •O2−, and •OH active species.
According to the discussion above, a possible photo-

catalytic mechanism of Ag/BiV0.9925Mo0.0075O4 was
illustrated in Fig. 13. The dopant Mo could effectively
enhance the visible light absorption of the BiVO4 photo-
catalyst. Ag/BiV0.9925Mo0.0075O4 composite photocata-
lysts were irradiated under visible light, and the
photoelectrons in the valence band of BiVO4 could
effectively jump to the conduction band to generate
electron–hole pairs. The metallic Ag could accept the
electrons, which then recombine with the photogener-
ated holes and enhance the transfer to the surface of the
composite photocatalysts, resulting in the improvement
of the separation of electrons and holes. The electrons
could react to the O2 and transform to •O2−. The holes
of BiV0.9925Mo0.0075O4 could react with the adsorbed
H2O molecules and transform to •OH. Meanwhile,
the h+ could effectively react with the RhB, generating
degraded products.

Conclusions
Herein, a simple hydrothermal synthesis procedure at al-
most neutral pH conditions and using ammonium
carbonate as the structure-directing agent is reported for
the preparation of Mo-doped BiVO4 powders. Metallic
Ag nanoparticles were then deposited on the (040) crys-
tal facet of BiV0.9925Mo0.0075O4. Thus, a photocatalytic
system has been successfully constructed by means of
the reduction reaction. These synthesis conditions have

Fig. 12 Electron paramagnetic resonance (ESR) spectra of Ag/
BiV0.9925Mo0.0075O4 in a DMSO solvents and b water

Fig. 13 Schematic mechanism of charge transfer in the Ag/BiV0.9925Mo0.0075O4 composite systems under visible light irradiation
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been shown to significantly influence the increase in the
size of the (040) crystallographic facet, as confirmed by
XRD and STEM analyses. The XRD indicated that the
peak splitting observed at 30.5° is a result of the (040)
facets. Ag nanoparticles deposited on the (040) facets
can also be seen from the STEM. Furthermore, Ag/
BiV0.9925Mo0.0075O4 showed a highly efficient photocata-
lytic performance for RhB degradation under visible
light irradiation. This work could offer new inspir-
ation for the rational utilization of BiVO4 photocata-
lysts with high photocatalytic activity and their
applications in the fields of energy production and
environmental protection.
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